The parameter optimization in the inverse distance method by genetic algorithm for estimating precipitation.
نویسندگان
چکیده
The inverse distance method, one of the commonly used methods for analyzing spatial variation of rainfall, is flexible if the order of distances in the method is adjustable. By applying the genetic algorithm (GA), the optimal order of distances can be found to minimize the difference between estimated and measured precipitation data. A case study of the Feitsui reservoir watershed in Taiwan is described in the present paper. The results show that the variability of the order of distances is small when the topography of rainfall stations is uniform. Moreover, when rainfall characteristic is uniform, the horizontal distance between rainfall stations and interpolated locations is the major factor influencing the order of distances. The results also verify that the variable-order inverse distance method is more suitable than the arithmetic average method and the Thiessen Polygons method in describing the spatial variation of rainfall. The efficiency and reliability of hydrologic modeling and hence of general water resource management can be significantly improved by more accurate rainfall data interpolated by the variable-order inverse distance method.
منابع مشابه
Airfoil Shape Optimization with Adaptive Mutation Genetic Algorithm
An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...
متن کاملSolving random inverse heat conduction problems using PSO and genetic algorithms
The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorith...
متن کاملارزیابی کاربرد شبکه عصبی مصنوعی و بهینهسازی آن با روش الگوریتم ژنتیک در تخمین دادههای بارش ماهانه (مطالعه موردی: منطقه کردستان)
Estimating spatial distribution of precipitation is vital to execute water resources plans, drought, land-use plans environment, watershed management, and agricultural master plans. High variation in amount of precipitation in various parts, lack of measurement stations, and the complexity of relationship between precipitation and parameters affecting it have doubled the importance of developin...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملVolumetric soil moisture estimation using Sentinel 1 and 2 satellite images
Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental monitoring and assessment
دوره 117 1-3 شماره
صفحات -
تاریخ انتشار 2006